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ABSTRACT

The work described is a continuation of that reported

previously in AEDC-TN-61-65, AEDC-TDR-62-131, and AEDC-TDR-65-82.

The present report contains a general method for integrating
numerically through a saddle-point singularity of an ordinary
differential equation. The solution of the differential equation

is assumed to depend also on the value of a parameter, such as
the mass flow. The method is thus applicable to a wide assort-
merit of gas-dynamic problems including one-dimensional nonequi-

librium nozzle flow and two-phase nozzle flow.

Specific application is made to nonequilibrium nozzle flow,
and the results of this application are presented and discussed.

The method proved to be numerically accurate without requiring an

exceedingly precise estimate for the critical mass flow.

The work also includes a modification of the method for
calculating approximate equilibrium nozzle flows first given in

AEDC-TDR-62-131.
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SYMBOLS

PRIMARY SYMBOLS

A nozzle area

A given nozzle areag

c defined by equation (3-37)

c spccific heat of translation and rotation at constant
pressure per mole of species i

E percent error defined by equation (3-9)

eD energy of reaction per mole of species i

e vibrational energy per mole of species i
vi

fi defined in Section 3.5

h integration step size

h enthalpy per unit mass of fluid

ht stagnation enthalpy per unit mass of fluid

Mf Mach number based on the frozen speed of sound

m mass flow per unit time

m mass flow per unit time for the equilibrium-flow solutioneq

RI f mass flow per unit time for the frozen-flow solution

N defined by equation (1-3)

N1  total number of chemical species

1 1 mole-mass ratio of species i ; that is, number of moles
of species i per unit mass of fluid

ni,eq value of ni for the equilibrium-flow solution

PQ defined by equation (2-1)

Hi universal gas constant

T static temperature

vi
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u flow speed

V length of region IV

V. input parameters defined in Chapter 31

X parameter defined by equation (2-5)

x distance along nozzle axis

xy variables in equation (2-1)

x defined by equation (3-18)

parameter defined in Chapter 2

Y ratio of specific heats

71i constants defined in Section 3.5

xl(x) function defined by equation (3-19)

k2 (x) function defined by equation (3-21)

p mass density of fluid

defined by equation (3-4)

SUPERSCRIPTS AND SUBSCRIPTS

value at the saddle-point singularity

value at an extremum of h(X)

denotes differentiation with respect to x

value at the preceding integration step x - h

()++ value at x - 2h

a,b defined in Section 3.7

cr value associated with the critical solution

f frozen-flow value

i value for species i

vii
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o value at the initial point

opt value at the optimum point

th value at the nozzle throat

tr value at the transfer point

III value associated with region III

IV value associated with region IV

viii
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1.0 INTRODUCTION

This is the fourth and final report in a series concerning the
calculation of the reacting flow of a complex gas in the nozzle of a
hypersonic wind tunnel. The preceding three reports, hereafter
referred to as Parts I, II, and III, dealt with the following topics:

(a) Part I, by Vincenti (1961), describes a five-species model
for air, governed by eight chemical kinetic reactions. A
method is given for the numerical calculation of the one-
dimensional nonequilibrium flow of this gas through a
hypersonic nozzle. A specific calculation carried out on
a high-speed digital computer revealed that the method
required too much computer time to be practical for
engineering purposes.

(b) Part II, by Emanuel and Vincenti (1962), do-'1 .... (ethod

,_•± amount of
machine time. This i puiu uibu contains an approximate
but relatively simple method for calculating equilibrium
nozzle flows.

(c) Part III, by Emanuel (1963), contains the analytical basis
for the numerical method described in Part II. The report
is thus concerned primarily with the interaction of a
"stiff", ordinary differential equation and various inte-
gration procedures.

The method described in Part II requires that the forward integra-
tion of the nonequilibrium equations proceed from an initial point that
is in equilibrium. This point is chosen somewhat upstream of the
nozzle location at which the chemistry first departs appreciably from
the equilibrium-flow solution. For a sufficiently high stagnation
pressure, this point may be taken in the supersonic portion of the nozzle.
In this situation the nonequilibrium flow is readily calculated by the
method given in Part II. For low stagnation pressures, however, the
chemistry first departs from the equilibrium-flow solution at a subsonic
nozzle location, and the forward integration of the equations must now
proceed from a subsonic initial point. In this case the method given
in Part II must be modified to incorporate a procedure for dealing with
the singularity that occurs at the sonic point. This report describes
in detail one such method.

The sonic-point singularity occurs in both frozen and nonequilibrium
nozzle flows. In both instances it is a saddle point that occurs when
the numerator and denominator of the right-hand side of an ordinary dif-
ferential equation simultaneously become zero. The differential equation
involved is a gas-dynamic one. In the frozen-flow case, for example,
it is given by



AEDC-TDR-64-29

ax.1M 2 ((-l)

II

where T is the temperature, x the distance along the nozzle axis,
y the ratio of specific heats, Mf the Mach number based on the frozen
speed of sound, and A the nozzle area. For frozen flow, the location
of the singularity is at the throat and the critical mass flow is easily
determined. Equation (1-1) assumes that the nozzle area is a given
function of x , as is generally the case, while the temperature is
the unknown dependent variable. If the role of the two variables is
interchanged, i.e., the temperature is a given function of x and the
area is the unknown dependent variable, then the singularity is
removed. This result is evident when equation (1-1) is rewritten as
follows:

dA f (T d (1-2)

Thus, the singularity in one-dimensional nozzle flow occurs only when
the doubled-valued variable A is taken as the given function of x

In nonequilibrium nozzle flow the situation is more complicated.
In particular, the location of the saddle point and the critical mass
flow are not known a priori. It is therefore necessary to guess a
value for the mass flow before starting the numerical integration.
This value, of course, will probably differ from the critical one, and
the resulting solution will either be subsonic for the entire nozzle,
or an infinity, which terminates the solution, will occur upstream of
the singularity.

The problem dealt with in this report may be stated as follows:
A solution is to be obtained that passes smoothly through the saddle-
point singularity of an ordinary differential equation. This solution
furthermore depends on a parameter, such as the mass flow, whose precise
value is unknown. As such, this problem is encountered not only in
computing nonequilibrium nozzle or diffuser flow but occurs also in two-
phase nozzle or diffuser flow (see Glauz (1962)). It also appears in
inviscid flow about a two-dimensional or axisymmetric blunt body in a
supersonic stream when such flow is computed by the method of integral
relations (see Belotserkovskii (1957) and (1958) or Xerikos and
Anderson (1962)).

A general solution to the foregoing problem is outlined in
Chapter 2. This solution takes the form of a well-defined numerical
method, hereafter referred to as the optimum-point method, that is well
suited for use with high-speed digital computers. The method has the
important advantages of being relatively simple to apply, not requiring

2
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an exceedingly precise estimate of the parameter, and yielding a numeri-

cally accurate solution. Specific application, described in Chapter 3
and in Appendix I, was made to nonequilibrium nozzle flows. Numerous
calculations on an IBM 7090 computer verified the simplicity and accuracy
of the method in this application. The results of one of these, along
with the corresponding equilibrium nozzle-flow solution, is presented in
Chapter 4. This chapter also discusses certain gas-dynamic results
stemming from this calculation. Finally, Appendix II modifies the approx-
imate equilibrium method first presented in Part II.

The singularity problem can also be attacked by means of trial-and-
error procedures, wherein numerous integrations are performed, each with
a slightly different value for the mass flow (see, for example,
Reichenbach (1960)). Once a subsonic solution is available that is
sufficiently close to the critical one, the integration can then be
started from a supersonic initial point obtained by extrapolating the
subsonic solution across the singularity. This approach, however, consumes
a considerable amount of computer time and generally results in a more
accurate estimate for the critical mass flow than is actually needed.

Other methods also exist for dealing with saddle-point singularities.
These methods are applicable only in special circumstances. For example,
Eschenroeder, Boyer and Hall (1962) outline a method for dealing with
the singularity in nonequilibrium nozzle flow. Their method is based on
the assumption that the nonequilibrium value for the density differs neg-
ligibly from its equilibrium-flow value in the subsonic portion of the
nozzle. The equilibrium value of the density is then used as the inde-
pendent variable to calculate the subsonic portion of the nozzle. Another
special method designed for two-phase flows is due to Glauz (1962). This
method introduces a new dependent variable N defined by

(M2 _.1) 2 )
20 2

Transformation (1-3) does remove the singularity from equation (1-1).
The transformed equation, however, must now simultaneously satisfy the
interior-boundary conditions N = 0 and (dN/dx) = 0

The author wishes to express his sincere gratitude to Professor
Walter G. Vincenti for his encouragement and assistance, Thanks are also
due to Mrs. Lita Emanuel for editorial assistance and to Messrs. H. L.
Mitchell and Lyle B. Smith for computer programming. During the work
the author was supported in part by a research grant to Stanford University
from the National Science Foundation.
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2.0 OPTIMUM-POINT METHOD

Before the optimum-point method is described in its simplest form,
some pertinent facts concerning saddle points will be presented.
Consider the single ordinary differential equation

k = (2.1)

with the initial condition y(x ) = y . In addition, let the right-
hand side of equation (2-1) depend on a parameter a not explicitly
shown in the equation. Consequently, the solution of equation (2.1),

y = y(x;X), (2-2)

depends on a . We also require that for a unique value of a , refer-
red to as the critical value ccr , the differential equation has a
saddle point at (x*,y*) , as shown in Figure 1. For values of a
different from oer I the integral curves lie either above or below the
critical solution Ycr = Y(x;ar) Only two solutions of equation (2-1)
actually pass through the saddle point. One of these originates at a
point above y* , while the other originates below. We may restrict the
discussion to the case yo > y* without loss of generality.

In general, the critical value of a is not known a priori. In
this case, for some value of 4 , say a (see Figure 1), the integral
curve y(x;al) has a minimum where P(xy(x;9l)) is zero. This zero
generally does not occur at x = x* . Similarly, each integral curve
below the critical one has a point where Q is zero and the slope is
infinite. This zero does not generally occur at y = y*. Thus, the
exact location of the saddle point (x*,y*) is also not known a priori.

It is well known that the critical solution in a neighborhood of
the saddle point is linear. The slope of the critical solution at the
saddle point can be determined if L'Hospital's rule can be applied to
the indeterminate form P/Q . When the location of the saddle point is
not known a priori, however, L'Hospital's rule cannot be applied
directly.

Finally, we note that if a is close to acr , then the integral
curve y(x;a) remains close to ycr until either P or Q is nearly
zero. Furthermore, the slope dy(x;a)/dx also remains close to
dYcr/dx until the integral curve y(x;a) approaches the saddle point.
Thus, if a is sufficiently close to a'Cr , there will exist a point
(x t,Y t) on y = y(x;u) , close to the saddle point, where the slope
dyyx;Q)/?x best approximates the slope of the critical solution evaluated
at the saddle point. The function of the optimum-point method is to
locate this point. It must be re-emphasized that the location of the
optimum-point cannot depend explicitly on the critical value aer . on

4
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the location of the saddle point (x*,y*) , or on the slope of the criti-
cal solution at the saddle point, since all these quantities are unknown.

The actual location of the optimum point depends on a criterion based
on L'Hospital's rule. When this rule is applied to equation (2-1), we
obtain

dP
Sdx (2-3)

dx dQ

dx

where the derivative d( )/dx is given by

d + d
!-ý + dx

When dy/dx is eliminated from equations (2-1) and (2-3), the following
result is obtained:

P Q .= 0 (2-4)dP dQ

dx dx

This result is exact, of course, only at the saddle point. The left-hand
side of equation (2-4), which has the same dimensions as x , in general
is not zero when evaluated away from the saddle point. A new parameter
XpQ is therefore defined as

P Q
XpQ d ("25)

dx dx

This parameter is evaluated along a specific integral curve during the
forward integration of equation (2-1). How XpQ is evaluated numerically
is discussed in the next chapter. The optimum point is then defined as
the point nearest to (x*,y*) where IXPQI is v minimum.

We now indicate why one of the several minimum values of .IXPQ
that may occur gives the point at which the slope dy(x;OX)/dx best
approximates the slope of the critical solution evaluated at the saddle
point. We first assume that P and Q are continuously differentiable,
as is generally the case. Next, let us rewrite XpQ as follows:

(dP

PQ dP dx dQ
TX dx!)



AEDC-TDR-64-29

Since P and Q are continuously differentiable, the ratio
(dP/dx)/(dQ/dx) may be evaluated at the saddle point, which is assumed
to be close to the optimum point. The quantity in parentheses is then
approximately the difference between the slope dy(x;z)/dx and the slope
of the critical solution at the saddle point. Therefore, this minimum
value of IXpQI corresponds to the optimum point.

As U tends toward Ucr , the integral curve y = y(x;a) tends
toward the critical solution. Thus, the optimum point will also tend
toward the saddle point as shown by the dots in Figure 1. All of the non-
equilibrium nozzle-flow calculations carried out in the course of this
work are in accord with the foregoing conclusions.

On the basis of the foregoing ideas, an approximate numerical solu-
tion that passes through the saddle point can be constructed as follows:

(a) The numerical integration of equation (2-1), for a particular
value of C , proceeds from (xo,yo) until the optimum point
is reached.

(b) For values of x in an interval xo~t • x • Xtr ,where the
transfer point Xtr is defined as some suitable point greater
than x* , the linear approximation

Y= (X-Xopt)( ) opt + Yopt (2-6)

is used.

(c) For values of x greater than Xtr equation (2-1) is again
integrated numerically with the initial condition

Y(Xtr)= (Xtr- opt dx) opt opt(2-7)

This scheme is deficient in that dy/dx will have a discontinuity at
xtr since P/Q , evaluated at (xtr,y(xtr)) , will not generally be equal
to (dy/dx)o t . This difficulty can be avoided if it is possible to
rewrite equation (2-1) in an alternative form that does not contain a
singularity in the region xop$ 5 x • x . In this case, both equations
(2-1) (in its alternative form) and (2-• apply and consequently P/Q
evaluated at (xtry(x- )) , will equal (dy/dx) 0 t and no discontinu-
ity occurs. Chapter 3.0 demonstrates how this is accomplished for
nozzle-flow calculations.

The foregoing scheme is practical only If la-czcrl is small. By

small we mean that a and acr agree to three or four significantfigures.
This is, in fact, a considerable improvement over other saddle-point

6



AEDC-TDR-64-29

methods, which frequently require much greater accuracy for the value of
a . The condition that la-acrI be small can be satisfied, for example,
by requiring that both IP(x a'yo t) and IQ(x0 t~yopt)I be small.
The numerical calculation can henpbe fully automated by including pro-
vision for restarting the calculation at x when one or both of these
conditions is not satisfied. The new calculation would, of course, pre-
sumably use a value for a considerably closer to acr than the preced-
ing one.

An additional advantage of the optimum-point method is that no special
choice for the variables is necessary. Furthermore, those equations not
containing the saddle-point singularity are not affected.

3.0 APPLICATION TO NONEQUILIBRIUM NOZZLE FLOW

3.1 INTRODUCTORY REMARKS

This chapter applies the optimum-point method to the saddle-point
singularity that occurs in steady one-dimensional nozzle flow. For con-
venience, the discussion will be limited to nonequilibrium nozzle flow,
although the method is equally applicable to nonequilibrium diffuser flow
and two-phase nozzle or diffuser flow. In addition, the method has been
applied successfully to the approximate equilibrium nozzle-flow method
given in Part II.

Specifically, this chapter describes how the nonequilibrium nozzle-
flow equations can be integrated numerically from an initially subsonic
condition to a supersonic one. The same equations and notation, except
for the mass flow, given in Part II are retained here. Thus, the quanti-
ties x, y and U of Chapter 2.0 become x , distance along the nozzle
axis, T , temperature, and m , mass flow, respectively. Equation (2-1)
is replaced by

dT P (3-)
dx Q'

where

Q, (3-2)

and

(u 2 dA)P=N1 A dx @(3-5

Y cp ni

i~l
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In the foregoing, Mf is the frozen Mach number, u the flow speed,
epi the specific heat at constant pressure of species i , ni the mole-

mass ratio of species i , N1  the total number of chemical species, and
A the nozzle area. As is evident from definition (3-2), the singularity
occurs at Mf = 1 . At this point P must also be zero if dT/dx is to
have a finite value. Consequently, the singularity occurs when simulta-
neously Mf = i and = A-l(dA/dx) The quantity q is given by

N1 dn

to-N dx- 2 N1 'X

n. RT ni!
i=l i=l

d N1  de .1I dni ' v.1
V(C piT+e v - e D ---- + _n i--x (3-4)

i/_•cPiT v. eD)i +~~~~

Li i= 1 .1

where R is the universal gas constant, e the vibrational energy

per mole of species i , and eD the energy of reaction per mole of

species i . Equations (3-1) through (3-4) constitute only a portion of
the system of algebraic and ordinary differential equations that must be
solvcd simultaneously as described in Part II. The other equations,
however, are not needed here since only equation (3-1) contains a
singularity.

In order to clarify the subsequent discussion, the nozzle is divided,
as shown in Figure 2, into five regions. Each region is discussed in
turn in the ensuing sections. Region I, discussed in Section 3.2, con-
sists of the low-subsonic portion of the nozzle. (Section 5.2 also con-
siders how an initial estimate for the mass flow can be made.) Region
II is similar to region I except that X is now evaluated at each
integration step in order to locate the optimum point. Region III begins
at the optimum point and terminates when the flow becomes supersonic.
Since this region contains the saddle point, an inverted form of equa-
tion (3-1) is used here. Region IV "patches" the altered nozzle area
actually used in the forward integration in region III to the given nozzle
area. Region V includes the remainder of the nozzle. The final section
of the chapter, Section 3.7, discusses how the mass flow is modified if
a more precise solution is desired.

Three input parameters, denoted by Vi (i = 1,2,3) , are introduced
to control certain arbitrary features of the optimum-point method. Thus
x = V1  initiates region II, Mý = V2  initiates region IV, and V3  con-
trols the overall accuracy. The quantity V defined as the length of
region IV is not to be confused with the input parameters Vi

8
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3.2 REGION I

The numerical integration of the nonequilibrium nozzle-flow equa-
tions starts at x. . which for simplicity is taken as zero. At this
location, the flow is assumed to be in equilibrium at some density p.
and temperature T0 . This determines the initial composition ni 0
and vibrational energy ev . As in Part II, the nozzle area A is

considered to be a known function of x

The mass flow m and stagnation enthalpy ht , must also be given.
The best choice for m , of coursej would be the critical mass flow mer
Although this quantity is unknown, it satisfies the following inequal-
ities (see Bray (1959)):

meqCm C

eq cr mf

where me q is the equilibrium-flow value of m and mf is the frozen-

flow value, i.e., the value with all ni and evi held constant at

their initial values. Based on expericnec, a good initial guess for Lhe
mass flow is 0.95 mf . The frozen mass flow is approximately given by

V- 7o+l Nl "I•

= (2)70-1 1 (3-5)
yH =T( 7 ,o0 PoAth ,

where Ath is the nozzle area at the throat, and the ratio of specific
heats yo is given by

N1c n
o= N (3-6)

•(ep- R)ni1'o

1=p

Equation (3-5) is exact when the initial conditions are the stagnation
conditions. Since conditions at xo= 0 correspond to a non-zero frozen
Mach number, the value for mf given by equation (3-5) is somewhat too
small. This error is negligible, however, when the frozen Mach number
at x = 0 is small.

0

9
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Region I ends when x = V1 , where the input parameter V, must be
chosen sufficiently large that the first minimum of IXOQI in region II
corresponds to the optiniim point. Generally V, will lie at a nozzle
location slightly upstream of the throat.

3.3 REGION II

After each integration step, XpQ is computed and stored for two
steps. Its numerical value is given by

h1P P+ I (3-+)

- P Q Q' ,
L+

where h is the integration step size and ( ) denotes the value of
at x-h . Equation (3-7) is thus a finite-difference form of

equation (2-5). A minimum of IXpQI occurs when both

are satisfied, where X ++ is the value of X at x- 2h . Conditions
(3-8) are checked after, each integration step Tn region II. When satis-
fied, the value of x corresponding to XpQ is the optimum point x,,t
At this time, the actual integration is at xopf+ h • Since region III
starts at Xopt I it is advisable that the quantities

T, dT/i(x , ni(i=l,...,Nl) , evi(=) I...,Il) I

be stored for one step in region II.

3.4 REGION III

Region III begins where x = Xot and continues until the frozen
Mach number is greater than unity. The temperature TIII in this region
is given by (see equation (2-6))

T To + (x-x )(dT(39)

XII opt opt 'dxopt

As pointed out in Chapter 2.0, it is desirable to retain equation (3-1)
in region III. This is accomplished by inverting this equation to obtain

N

dIII 2(i )dT\SAI cPin 'opt+ (3_1o)

10
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In this equation ATTT is an unknown nozzle area. In region ITT (and
later in region IV) the given nozzle area is denoted by Ag to distin-
gulih iU from the nozzle area actually used in the forward integration.
These latter nozzle areas are denoted by AIIT and AIV In the above
form, equation (3-10) contains no singularity.

Equations (3-9) and (3-10) in conjunction with the other nozzle-flow
equations yield an exact numerical solution providing A is replaced
by AIII and AIV in regions III and IV. In other worgs, the mass flow
m being used becomes the critical mass flow for a nozzle whose area
distribution is the given one in regions I and II and is specified by
AITI and AIV in regions III and IV. A convenient measure of the accu-
racy of the optimum-point method that is useful for mass-flow modifica-
tion discussed in Section 3.7, is thus given by the percent error

A - A,,,
g II 2E A X 10 . (3-11)

g

Region III is terminated when M2 = V , where the input parameter

V2  is slightly greater than unity (supersonic flow). This nozzle loca-
tion is referred to as the transfer point Xtr

3.5 REGION IV

At the transfer point, the area A... and its derivative dAiii/dx
do not equal Ag and dA /dx . Consequently, region IV constitutes a
short nozzle segment

Xtr xxtr + V (3-12)

that is used to "patch" AII1  to the given area Ag at Xtr+ V
How the positive quantity V is found is described near the end of this
section. Thus, AIV(x) is used to join AIIT gradually to A . The
nonequilibrium equations of regions I and II are used here. Thqs section
therefore describes a procedure for calculating AIV

Considerably more effort was expended in this phase than in the rest
of this work combined. A satisfactory but sophisticated procedure for
finding ATV was arrived at only after an exhaustive search. Any simpler
procedure may work for specific stagnation conditions and given nozzle
geometry but will prove inadequate for others. Thus, a wide variety of
stagnation conditions and given nozzle geometries were used to check the
various procedures tried. Only the procedure given here proved to be sat-
isfactory in all cases. For these reasons, the nature of the difficulty
will first be described in detail.

1i
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At the transfer point, the quantity Ai]i(dAiii/dx) -0 in equation
(3-3) is close to zero since it is zero just upstream of this point.
Inasmuch as Aj1(dA /dx) and - are nearly equal at the start of
region IV, a small error in the value of AiV(dAiv/dx) will result in
a large error in dT/dx . Therefore, unless AIv matches A,,, at
Xtr in a smooth fashion, the temperature gradient in region IV will
differ drastically from that in region III, i.e., from (dT/dx)opt
To avoid this discontinuity the three quantities

1 dA d(1dA

are required to be continuous at Xtr . These conditions are generally
sufficient to assure a smooth variation of T and dT/dx at Xtr .

The area function A'l(dA/dx) is the most important of the fore-
going quantities since it appears directly in equation (3-1). Its
variation with x in the vicinity of the singularity is sketched in
Figure 3. Iu this figure the solid curve represents the given area
fu~ction A_1(dAg /dx) , while the dashed curve labeled III represents
A iI(dAiii/hx) . The dashed curve corresponds to a mass flow somewhat
greater than the critical one since dAiii/dx is greater than dAg/dx
If the mass flow is less than the critical one the dashed curve would be
below the solid one. The other curves in Figure 3 are described later.

The continuity requirements (3-13) do not always completely remove
the discontinuity in dT/dx at Xtr . When Runge-Kutta integration is
used (see Part III for further details), an unstable feedback mechanism
may occur during the first integration step in region IV. This mecha-
nism o erates as follows: As already noted, a small error in the value
of A-v(dA v/dx) first results in a larger error in dT/dx . Subse-
quently, the value of the temperature will be in error and thereby cause
errors in the values of dni/dx and devi/dx . The value of q , given

by equation (3-4), therefore will also be somewhat in error. If the
errors in the values of A- (dAiv/dx) and 0 are additive, as is occa-
sionally the case, then the resulting value for dT/dx will now be
appreciably in error. This leads to further errors in the values of
dni/dx , etc.

The above mechanism operates only during the first Runge-Kutta
integration step in region IV, no matter how small the size of the inte-
gration step. Basically these difficulties are due to the nozzle area
not being analytic at Xtr - Matching third or higher derivatives of
the area at Xtr would partially alleviate the problem. This is im-
practical, however, as will become apparent later. The discontinuity
in dT/dx , which is minimized when the procedure described later is
used, decays rapidly after the initial integration step in region IV.
Thus, by the time three integration steps are completed the temperature
gradient has returned to a value consistent with (dT/dx)opt

12
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The feedback difficulty just described is not alleviated by increas-
ing V2 . Increasing V2 merely shifts the transfer point Xtr down-
stream and allows the error E to increase further.

It is instructive to describe what happens when a polynomial is
used to represent AIV , since this formulation is quite simple. For
example, a fifth-degree polynomial in x could be used to match A,,,

dAIII/dx and d2A II/dx at Xtr and the same quantities at Xtr +V
The resulting variation of AiV4(dAI /dx) is sketched in Figure 3 as
the dotted curve labeled "polynomial area variation." This curve con-
stitutes a poor approximation to the given one (solid curve) and will
result in values for dT/dx considerably different from (dT/dx)opt
throughout mosL of region IV.

As mentioned earlier, when the mass flow is greater than the crit-
ical one, AIII and dAiii/dx at Xtr will generally be greater than
their corresponding given values. Thus, if AIV is to match A at
Xtr +V , then the gradient dAIv/dx must be less than dA _/dx guring
part of region IV. This is the reason why any area function
Ai?(dAiv/dx) must cross A1l(dA !dx) (see Figures 3 and 5). Similar
reasoning also leads to the conesion that the two curves cross when
the mass flow is less than the critical one.

We shall now describe the method of formulation and the procedure
finally arrived at to determine AIV . The conditions imposed are as
follows:

(a) At x = Xtr , we require that

A -A
IV - III '

1dAv 1 dAII
1 IV 1 II (3-15)

A IV dx 'AIII dx

d I• dA TV" d I dA III 4-6
d A dxA - dx A dxA "

(b) At x = Xtr +V , we require that

A =A (3-17)
IV g'

dA dA
1 Iv 1 g

A dx A dx
IV g

13
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d 1dAIv\ -L / _L A

dxkA,-V dx--ý dxk ýAg dx/ 3-9

(c) In region IV, we also require that A, (dAV/dx) be a reason-
able approximation to A1 (dA /dx) . This condition will be
formulated more precisel5 later.

In addition to x , the variable x is also used, where

x -(xXtr) -1 (3-20)

Equation (3-20) linearly transforms the interval (Xtrxtr+V) into

(-1,1) . Since A-I(dAiv/dx) , rather than AIV , is of primary impor-

tance, the following formulation is used:

1dA dA

X= i + 9 (3-21)
AIr -g- =l)+ dx'

where AIV and A are considered to be functions of x and the

function XI is sAill to be found. To determine AIV , equation (3-21)

is integrated from Xtr to x , thereby resulting in

A I V (x t r ) x( -2
AIv(x) = Agv(xtr A g(x) exp[.(x)] , (3-22)

where

x

XiJ x(X) (3-23)
-1

Condition (3-14) is then satisfied by replacing Aiv(xtr) in equation

(3-22) by the known quantity Aiii(xtr) . Condition (3-15) becomes
xl(-l) = ql where the known constant Tl is given by (see Figure 3)

T11 I dA dAg1 (3-24)

Ai dx A dx 3

Ing . X=Xtr

14
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15 / 1
TI3  W - III/g + (3-3-1)

- x=Xt )

The foregoing results satisfy conditions (a) and (b) given by equa-
tions (3-14) through (3-19). Condition (c) is approximately satisfied
by choosing f 3 appropriately. For simplicity, it is taken as

f 3 () i x , (3-32)

where the constant % is still to be determined.

Figure 3 shows a sketch designated by (IV) of AII(dAv/dx) for
a positive value of q, , while Figure 4 shows the corresponding
xl/ýl curve. Figure 5 is similar to Figure 3 except that nl is
negative. In either case, X1  has an extremum in the vicinity of the
origin. This extremum and its location are designated by X. and x*
As is evident from Figures 3 and 4, condition (c) is approximately ful-
filled if I'k~ is minimized.

For fixed values of nli q2 and T 3 , x* is determined by the
condition

- 0 , (3-33a)

or

3 1 il + 3x *+x, 0*.r.+(3-33b)
1 1 4 "I + j 127 +x* f 5T14x

:L-+x j

To minimize j , we first note that XT = l(X*(,14);n 4 ) . Hence,
the desired minimum occurs when

1 ý 0__ (6-34ta)

The second term on the right-hand side, however, is zero by virtue of
equation (3-33a). Thus, equation (3-34a) ean he shown to reduce to

- 2- 2-
(X.* +i)(x _)* = 0, (3-34b)

The solution of equations (3-33b) and (5-34b) readily results in

16
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3 1

When equations (3-28) through (3-32) and equations (3-35) are com-
bined, the following is obtained:

7 I + l(ý,[MA1 1 1 /AgJ__ 1'1 (3-36)
x=xtr

The parameter V is now deLermined by setting -(>4/ql) = (3/4) in

equation (3-36) where, for convenience, the term rj 2/(16nl) is neglected.
When examined a posteriori, the value of this term is indeed found to be
small compared with unity. Thus, V is given by

V n [--•A /Ag] .(3-37)

tr

A smaller value than 3/4 for -(k4/rn) would result in a larger value
for V , while a larger value than -3/4 would result in a smaller V -
The choice made here, however, proved to be an acceptable one. As a con-
sequence of equation (3-37), the constant T3 is given by

q3 1 -l (3-38)

The pertinent equations of this section are summarized in a form

suitable for numerical work in Appendix I.

3.6 REGION V

This region includes the remainder of the nozzle. The given nozzle
area is used, and the forward integration proceeds as described in
Part II.

3.7 MASS-FLOW MODIFICATION

The initial value for the mass flow when chosen according to the
method in Section 3.2 may differ by as much as 5% from the critical mass
flow. To obtain a more precise calculation, a method is now described
for modifying the mass flow and the stagnation enthalpy.

After each integration step in region III the following check is
performed:

IE 1 :v , (3-39)-3

17
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where E is defined by equation (3-11)and V3  is a positive input param-
eter that controls the accuracy of the method. As long as condition (3-39)
is satisfied, the integration proceeds as described in Section 3.4. If
condition (3-39) is not satisfied, then the integration starts over again
at Xo= 0 with new values for the mass flow and stagnation enthalpy.

To determine a new value for the mass flow that is closer than the
preceding one to the critical mass flow, two different fictitious frozen
flows are compared. The first flow uses the current mass flow ma , the
temperature and nozzle area at Xo- 0 , and the temperature and nozzle
area at the point in region III where (3-39) is not satisfied. Accord-
ing to the usual frozen-flow equations, ma is given by

T12! 1 - TII---I
' T

T
m = Co. 2 (3-)
a o2

'A T "

L...A\Il., \T,1  1

where yo is defined by equation (3-6) and the constant c0  is

a
N - - 2

(2y\ I
Co RT' no A 0 (3-41)

- i=l .1

The second flow is similar to the first except that the improved mass
flow mb replaces ma and the value of A at the point where (3-39)
is not satisfied replaces AIII . Thus mb is given by

1

T

2 (3-42)
Ab C 2 *

Y -l
A_ 2, To -i

Taking the ratio of equations (3-40) and (3-42) then results in the
desired mass-flow correction formula

18
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1

2 2
i, Do- 2

*T Ai o ,ll

T -g A m (3-43)
rob! 2. A

Yo-\, ,,lo: 2 (o'(Ag

0 Tll Ao,/

The stagnation enthalpy ht is also modified in order that the
new nozzle-flow solution can start at the same equilibrium state
previously used. Thus, po, To, nilo , and ev. remain unchanged.

i,0

This is readily accomplished providing po is unchanged, since the
other quantities are initial conditions. The requirement

a
P0o = 7 - A (U) (3-44)

Tda 0 0)b

is therefore imposed, where (uo)a is the flow speed at xo 0 when

the mass flow is ma and (u.)b is the corresponding flow speed when

the nass flow is mb " The energy equation is now evaluated at xo= 0
for flows (a) and (b) as follows:

ht) a= ho + '-. 2 (3,-45a)

h h + (uo? 2  (3-45b)htbb

where ho is the enthalpy at Xo= 0 . By combination of equations
('-4)t) and (3-45), the desired stagnation-enthalpy correction formula
is obtained as

2 2

ht), h) a +(3-46
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4.o RESULTS AND DISCUSSION

4.1 GIVEN CONDITIONS

This chapter describes the results of one nonequilibrium nozzle-

flow calculation that utilized the foregoing optimum-point method.
This calculation and all others that were performed are based on the

same gas model used in Parts I and II. This is a model of air consist-
ing of the five species 0, N, NO, N2 , and 02 (identified by sub-

scripts i = 1,...,5 , respectively). The same eight reactions and the
same rate constants are also retained.

The variation of nozzle area with distance for all five regions is
given by

A = 10- 6x +x2 (4-1)g

This equation represents a hyperbolic nozzle with a throat area of
1 cmv2 located at x = 3.0 cm . All numerical integrations started at
x = 0 cm where the area is 10 cm2 and concluded at x = 4 cm where
the supersonic flow is well into region V.

At the initial point x = 0 cm the flow is assumed to be in eoui-
libriumn at a temperature of 80000 K and a density of 2.80 x 10-5 gm/cnl3 .

These conditions were chosen so that a significant portion of the dia-
tomic species would be dissociated at x = 0 . In addition, to insure
that the flow would depart from equilibrium upstream of the throat, a
small initial density as compared with that used in Parts I and II was

necessary. For all practical purposes, the foregoing are also the

stagnation conditions since the initial frozen Mach number is 0.0548.
The equilibrium composition and vibrational energies corresponding to

this density and temperature are given in the following table:

EQUILIBRIUM COMPOSITION AND VIBRATIONAL ENERGIES
FOR AIR AT 80000 K AND 2.80 x 10-5 GM/CM3

i SPECIES ni(MOLES/GM) ev i(DYNE CM/MOLE)

1 0 .14598473 x10-

2 N .455o8697 x1 -

3 NO .6007158O x10-4 •55920669 x 10 12

4 N2  .45156159X10-
2  53593265 x 10 12

5 02 .72687672 X 10-6 .57674503X 1012
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Initial values for the mass flow and sLagnation enthalpy were
chosen in accord with the discussion in Chapter 5. The final values for
these quantities are given in the next section. The following values
were used for the input parameters Vi

Vl= 2.8

V 2 = 1.01

V3 = 0.5

The optimum-point method was also used in conjunction with the
approximate equilibrium formulation given in Part II and modified in
Appendix IT of this report. The same nozzle geometry and initial con-
ditions as described above were used (except for mass flow and stagna-
tion enthalpy). The only changes were that the ni were sequenced as
follows: 02, N, NO, N , 0 . The reason for this change Is discussed
in Appendix II. In addition, for reasons given in the next secticn, a
value of 1.0 was used for V3

The calculations presented here were chosen because they proved to
be the most troublesome in terms of the instability described in Section
3.5. In fact, of the many procedures for determining A that were
tried only the one given here dealt successfully with this case. In
terms of instability, the approximate equilibrium calculation was more
troublesome than the nonequilibrium one. This point is discussed further
in Section 4.P.

4.2 RESULTS OF THE OPTIMUM-POINT METHOD

On the basis of equation (3-5), the foregoing conditions result,
in a frozen mass flow of 4.1925 gm/sec. Although equation (3.5 ) is
approximate, this value is very close to the true value since the initia]
Mach number is nearly zero. The initial value for the nonequilibrium
mass flow was Lhurefore chosen to be 0.95x 4.1925 = 3.98 gm/sec. The
final values for the mass flow and stagnation enthalpy came out to be
4.0540000 gm/sec and 7 .Oo6 hiP 2 X 10 1 0 cm2 /sec 2 , respectively. Figures
5 through 1.1 are based on these nonequilibrium values. This value for
the mass flow is slightly below the critical one, as is evident from
Figure 5. A subsequent calculation with a mass flow of 4.0830000 gm/sec
showed that this larger value was, in comparison, well above the
critical one. Thus, the mass-flow value of 4.054 gm/sec is accurate at
least to three significant figures.

With regard to accuracy, let us first compare the location and
area of the throat for the two nozzle areas, A and AIT. This com-
parison is presented In the following table:
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LOCATION AND AREA OF THE NOZZLE THROAT

NOZZLE THROAT THROAT
AREA LOCATION AREA

A 3.0000 em 1.00000 cm
2

g

A 11 3.0083 cm 0.99937 cm2

Another pertinent quantity is the maximum value of the percent error E
This occurs at Xtr and is 0.217%, well below its upper limit V• of
0.5%. Finally, we note that the calculated area function A-±(dA/dx)
shown in Figure 5, differs but slightly from the corresponding given
area function in both regions III and IV. (See Figure 3 for a more
detailed description of the curves in Figure 5.) We therefore conclude
that AIII and AIv do not differ significantly from A for reason-
ably accurate values of the mass flow, i.e., three significant figures.
Calculations based on a more accurate estimate for the mass flow than
4.054 gm/sec could be readily obtained. Such a calculation, however, was
not deemed necessary since the results for 4.054 gm/sec and 4.083 gm/sec
differed only negligibly. Thus, when the optimum-point method is used
the resulting solution differs negligibly from the critical one for
reasonably accurate values of the mass flow.

For the approximate equilibrium calculation, the values for mass
flow ang stagnation enthalpy are 3.7268000 gm/sec and 7.0048583X 1O0O
cm /sec , respectively. This calculation, which is also shown in
Figures 6 through 11, differed from the nonequilibrium one in two respects.
First, greater accuracy was required for the mass-flow value. This is
basically a consequence of the curves for P = 0 and Q = 0 being close
together upstream of the saddle point. As a result, for any value of the
mass flow different from the critical one, the calculation behaves as if
the singularity were located at the geometric throat, where the equilib-
rium Mach number is unity, rather than at Mf = I . The extent of region
III is therefore somewhat longer and the percent error at the transfer
poilt is larger as compared with the nonequilibrium calculation. Hence,
a larger value was used for V3  in the equilibrium calculation. As in
the nonequilibrium case, however, the solution for slightly different
values of the mass flow (i.e., m = 3.7271 gm/sec ) differed negligibly
from the one given here. Thus, the mass-flow value of 3.7268 gm/sec is
accurate to at least four significant figures.

The second difference is that the instability at the start of region
IV is more pronounced for the equilibrium calculation. This resulted
in a reduction in the integration step slze at the start of region IV.
Since the instability decays rapidly, however, the step size then proceeds
to increase to its former level.
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4.zs GASDYNAMIC RESULTS

Figures 6 through 11 show the results of the nonequilibrium and
equilibrium calculations. In all the figures the abscissa is the dis-
tance along the nozzle axis.

'Figure 6 shows the temperature variation. For interest the temper-
ature variation is also shown for a flow frozen at the same initial
conditions. From this figure it is evident that the nonequilibrium
solution starts to diverge from the equilibrium one at about x = 1.8 cm
where the frozen Mach number is 0.234. Along the entire nozzle, the
nonequilibrium and frozen-flow temperatures are quite close, indicating
that once the flow diverges from the equilibrium one it freezes rapidly.
This result is not a general one but rather is a consequence of the
specific stagnation conditions and nozzle geometry used for these
calculations. In particular, a rapidly varying nozzle geometry, which
is the case here, tends to favor rapid freezing. The large difference
between the equilibrium and nonequilibrium temperature after x = 2 cm
is due to nitrogen recombination in the equilibrium flow. This recom-
bination is briefly discussed later.

Figure 7 shows the density and pressure variations. In comparison
with Figure 6, it is seen that density and pressure are not as sensitive
as the temperature to nonequilibrium effects. This result is in accord
with other nozzle-flow calculations, such as those of Bray (1959).

Figure 8 shows the variation of the flow-speed. T'he equilibrium
and nonequilibrium speeds differ slightly at x = 0 cm because the
respective mass flows are different. Figures 9 and 10 show the varia-
tion of chemical composition and vibrational energy, respectively.

All quantities shown in Figures 6 through 10, with the excuption
of flow-speed, are nearly constant in the region from x ý 0 cm to
x = 1.8 cm . In this low-subsonic region, the nonequilibrium (or
equilibrium) solution is given approximately by

uA = constant , (4-2)

where all other variables are constant. Thus, the nonequilibrium and
equilibrium solutions will be close here regardless of the values of
the chemical and vibrational relaxation lengths. In this region, all.
relaxation lengths are directly proportional to velocity and therefore

increase steadily. Should any of the characteristic lengths become
sufficiently large here, the flow will then start to diverge from equi-
librium as soon as compressibility becomes important. This occurred
in the calculation shown here.
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Approximate values for the characteristic lengths at x = 0 cm and
at x - 1.8 cm were calculated according to the theory in Part II and
in Appendix II. They are presented in the following table:

CHEMICAL AND VIBRATIONAL CHARACTERISTIC LENGTHS

RATE EQUATION CHARACTERISTIC CHARACTERISTIC
FOR LENGTH, CM, LENGTH, CM,

AT x = 0 cm AT x = 1.8 cm

0 , CHEMICAL 1.32x10-
3  5.40x10-3

N it 6.71x10-
2  2.74 xlo"I

NO, 5.07 x 10- 4  2.07x 10-3

NO , VIBRATIONAL 1.30 x10 3  5.32 xO-

Nl2 l. 59 x 10- 2  6.50 x 10-2

02 , 11 X 10-
3  4.55x10-3

At x = 0 cm all of the characteristic lengths are small. At
x = 1.8 cm , however, the mole-mass ratio for atomic nitrogen should
start to diverge from its equilibrium value, whereas the mole-mass
ratios for atomic oxygen and nitric oxide are still close to their
equilibrium values. Since the mole-mass ratios for diatomic nitrogen
and diatomic oxygen are given by the equations for conservation of
components, the former will also start to diverge from equilibrium
while the latter will not.

The preceding conclusions are not discernible from Figure 9.
Indeed, this figure indicates that nitric oxide is the first species to
diverge from equilibrium and that atomic nitrogen remains close to its
equilibrium value until x = 3.0 cm . These fallacious conclusions are
a direct result of the log scale used for the chemical composition, a
convniciLlt and common practice. To clarify the situation, the variation
of In--n qI is shown in Figure 11, where ni,eq is the mole-mass
ratio of species i for the equilibrium-flow solution. This figure
clearly shows that the mole-mass ratios for atomic and diatomic nitrogen
diverge from their equilibrium-flow value far more appreciably than do
those for the other species. Figure 11 is thus in accord with the
findings based on the characteristic lengths. The valley in the curve
for diatomic oxygen in Figure 11 is due to the equilibrium and nonequi-

librium mole-mass ratios crossing, as shown In Figure 9.

According to the foregoing table of characteristic lengths, the
vibrational energy of nitric oxide wiil diverge from its local equilib-
rium value upstream of the other vibrational energies. Thus Figure 10,
while correct., cannot be used to determine now close any vibrational
energy is to its local-equilibrium value. This situation has been
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discussed in detail in Part II.

Figure 9 shows that a significant amount of nitrogen recombination
occurs in the equilibrium-flow solution. This recombination accounts
for the large difference between the equilibrium and nonequilibrium
temperatures. In the equilibrium calculation, the mole-mass ratios for
the other species, i.e., 0, 02 , and NO , remain fairly constant.
This is due to the small decrease in the equilibrium temperature, which
favors recombination, being counterbalanced by the large decrease in
the equilibrium density, which favors dissociation.
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APPENDTX I

ANALYTICAL EXPRESSIONS FOR A I(x)

The variation of nozzle area with distance in repion IV is given
below. At the start of this region the parameters 11 , V , and 112

are calculated. Equations (1-5) through (1-9) then determine AIV
and dAIv/dx -

dA dA

III d g x=Xtr-htr

i dAlll 1
SIII dx 1 (1-2)91 A III gA d x =Xt

tr

V 6 m AII/A(-3

12 Ph I ( I

x (x -i (1-5)

14(7,x I x-_6x_5)T,+ (x +1) (4xe -i)T 1 (1-6)

=-1 8 x+3+ 7x- 7x+i)q2 x+l x- ) 3

('-7)

A W A. /AI A (x)p K() (i-o)
IV III 12Ax=Xtr

dAA

dA V dA~

A v iV Y x --x ' (.U-9)
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APPENDIX II

MODIFICATION OF THE APPROXIMATE EQUILIBRIUM METHOD OF PART II

Two modifications of the approximate equilibrium method of Part II
are given here. The need for these changes became apparent when equi-
librium nozzle-flow solutions were sought that required the optimum-
point method. Once these changes were incorporated, along with the con-
dition that Pii -aii ' 0 (i = 1,... ,N ) as explained in Part IT, no
further difficulties were encountered. (See Part FI for definition of
symbols.)

The first change requires that 7 be replaced by - 7i in equation
(34c) of Part II as follows:

dni iSW= iniL - I, i =l,.. .,N 3 ,

where the I-,I are large constants. To understand the reason for this
change, we first derive the characteristic lengths Ei for equations
(II-1). The derivation is explained in detail in Appendix III of Part II.
Thus, the Eci are given by

-i 8i
Eci -1 . , i = 1,...,N3 ,(IT•2

1

with density, temperature, and all nj except ni held fixed. The
quantity Fi is defined by

Fi ini i[- , t-Ii = 1,...,N 3 * (11-3)

When the characteristic lengths eci are defined an above (i.e., without
absolute value signs and with density held fixed), they are equivalent
to u/Iii given in Part III. After the partial differentiation is per-
formed, and conservation of components as well as 1i 1 (]0w of mass
action) are accounted for, we obtain

1E ci = + I ,i = 1,...,N 3 .* IZ 4
Cl N

•i ii + X akia~ik/ni~k}

k=N +1 01
3

29



AEDC-TDR-64-29

Yo- cr

S\ -" • -/ //.,
I,,N . / /

Ycr- y(x, acr)

NI .

XO. I I x

Fig. I Intogrol Curves of (dy/dx) - (P/Q)

0VI X0opt X tr Xtr +V

TVV

Fig. 2 Sketch of Nozzle Configuration

31



AEDC-TDR-64-29

1.0

Ag (dA /dx)

TV-

*771
z
0 T

ILL t t V

w LOCATION OF POLYNOMIAL AREA
THE THROAT VARIATION

OF A

Fig. 3 Sketch of the Area Function A-' (dA/dx)

32



AEDC-TDR-64-29

xp)

-0 1.0

Fig. 4 Sketchef. 1 (X )/W/1

1.0

T
E

x 7

0- Xot /
- 2.5 ~trX, Cm2.5 "Xtr Xtr+V 3.5z

0I-
C.)
z
LL

-1.0

Fig. 5 Area Function A- 1 (dA/dx)

33



AEDC-TDR-64-29

9.0

8.0 -.- - ---.. _. . .

"7.0

~6.0

I-

w.NNQIIBIMFOSNONEQUILIBRIUM FLOW
-.- EQUILIBRIUM FLOW

5. 0 - FROZEN FLOW

To= 8000 *K

P 2.8xI10"gm/cm 3

4.0-

3.0-
0 1.0 2.0 3.0 4.0

X, cm

Fig. 6 Temperature

34



AEDC-TDR-64-29

10

p

a) P

E _M Im N0NEDUILIBRIUM FLOW

li p 
- . EQUILIBRIUM 

FLOW 
w& ~2.8xI10 gm/cm

U) Z -I

a-

10 0 1.0 2.0 3.0 4.0

x, cm

Fig. 7 Pressure and Density

35



AE DC-TDR-64-29

36.0

NONEQUILIBRIUM FLOW
EQUILIBRIUM FLOW

To"-8000 OK
30.0 P -= 2.8 x I0-s gm/cm3

"% 24.0
E0

*0

u-
U-

0

w 12.0w
CL)

6.0

0
0 1.0 2.0 3.0 4.0

x, cm
Fig. 8 Speed of Flow

36



A
AEDC-TDR-64-29

0"

N2  ' " _

•_ NONEQUILIBRIUM FLOW
"6- -EQUILIBRIUM FLOW

E I-
T.- 8000 *K
P= 2.8 xlO- gm/cm

0

E

0 NO
V5
0

0
8 io-5
_J

02

0-7 ,_._ __ _ __ __ __ _

0 1.0 2.0 3.0 4.0
x. cm

Fig. 9 Chemical Composition

37



AEDC.TDR-64-29

0 R

0 1.0 2.0 3.0 4.0

xscm
LLE

ZLw

5 0 1.0 2.0 3.0 4.0

x, cm

0 6.

W•Eu NONEQUIL!BRIUM FLOW ''

W U. EQUILIBRIUM FLOW

-J4

0 0 1.0 2.0 3.0 4.0

X, cm

Fig. 10 Vibrational Energy

38



AEOC-TDR-64-29

To =8000 OK

p. =2.8 x 0 5 gm/cm3  /N

N 2

W.4

0

IA -5__ _ _ _

10
E

ICF

0 1.0 2.0 3.0 4.0
X, cm

Fig. 11 ni - niagI

'39



UNCLASSIFIED

UNCLASSIFIED


